Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change
نویسندگان
چکیده
2 [1] There is good evidence that higher global temperatures will promote a rise of greenhouse gas levels, implying a positive feedback which will increase the effect of anthropogenic emissions on global temperatures. However, the magnitude of this effect predicted by the available models remains highly uncertain, due to the accumulation of uncertainties in the processes thought to be involved. Here we present an alternative way of estimating the magnitude of the feedback effect based on reconstructed past changes. Linking this information with the mid-range IPCC estimation of the greenhouse gas effect on temperature we suggest that the feedback of global temperature on atmospheric CO2 will promote warming by an extra 15-78% on a century-scale. This estimate may be conservative as we did not account for synergistic effects of likely temperature moderated increase in other greenhouse gases. Our semi-empirical approach independently supports process based simulations suggesting that feedback may cause a considerable boost in warming.
منابع مشابه
MIT Joint Program on the Science and Policy of Global Change Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle
A number of observational studies indicate that carbon sequestration by terrestrial ecosystems in a world with an atmosphere richer in carbon dioxide and a warmer climate depends on the interactions between the carbon and nitrogen cycles. However, most terrestrial ecosystem models being used in climate-change assessments do not take into account these interactions. Here we explore how carbon/ni...
متن کاملAn effective and ecofriendly suggestion to decrease atmospheric carbon dioxide by using NH3 gas
Global warming is increasing permanently, because the concentration of CO2 in the atmosphere is rising continuously. According to National Oceanographic and Atmospheric Administration, the concentration of CO2 in the atmosphere was 407 ppm in June 2016 and 413 ppm in April 2017 as a last record for now. If the effects of other greenhouse gases, such as CH4, N<su...
متن کاملThe role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming
A suite of simulations with the HadCM3LC coupled climate-carbon cycle model is used to examine the various forcings and feedbacks involved in the simulated precipitation decrease and forest dieback. Rising atmospheric CO2 is found to contribute 20% to the precipitation reduction through the physiological forcing of stomatal closure, with 80% of the reduction being seen when stomatal closure was...
متن کاملThe effects of buffer and temperature feedback on the oceanic uptake of CO2
The feedback between climate and carbon cycle systems is critical to the prediction of future CO2 concentration in the atmosphere and the capacity of the oceans to take up CO2 from the atmosphere. We calculated the magnitudes of the potential feedback between the increase of atmospheric CO2 concentration, the carbonate chemistry of the oceans (via a buffer factor), and the global temperature. W...
متن کاملEffects of climate change on water use efficiency in rain-fed plants
Water use efficiency (WUE) reflects the coupling of the carbon and water cycles and is an effective integral trait for assessing the responses of vegetated ecosystems to climate change. In this study, field experiments were performed to examine leaf WUE (WUEleaf) in response to changes in CO2 concentration and other environmental variables, including soil moisture and air temperature. We al...
متن کامل